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ABSTRACT

This study presents a comprehensive assessment of paddy cropping 
efficiency and production zones across 33 districts in Telangana, India, 
over two decades (2001–2020). The research integrates production zone 
dynamics, trend analysis, and machine learning classification to reveal 
significant agricultural and spatial development. Over the two-decade period, 
districts engaged in structured paddy cultivation increased dramatically. 
In Decade 1 (2001-2010), only 9 districts engaged in structured paddy 
cultivation, while 24 remained in the “Others” category. By Decade 2(2011-
2020), active production zones expanded significantly, with Primary zone 
districts doubling from 3 to 6, and both Secondary and Tertiary zones 
increasing more than fourfold, from 3 to 13 each. Cropping efficiency zones 
also underwent major transformation: High Intensity Cropping Zone (HICZ) 
districts rose from 5 to 17, while Highly Inefficient districts dropped from 23 
to zero. The Mann-Kendall trend test revealed a decline in increasing trends 
within the Most Efficient Cropping Zone (MECZ), from 5 districts in Decade 
1 to 3 in Decade 2, while decreasing trends rose from 3 to 5. A machine 
learning model trained on 395 districts achieved perfect classification 
performance, with precision, recall, and F1 Scores precision, recall, and F1-
score of 1.00 for both HICZ and NECZ. These findings highlight a positive 
trajectory in agricultural engagement and efficiency, while emphasizing the 
need for continued support in moderately performing zones and validation of 
predictive tools for broader application.

Keywords: Agriculture development, Cropping efficiency zones, Machine learning classification, Paddy 
production shift.

INTRODUCTION

Paddy cultivation remains a cornerstone of 
agricultural livelihoods and food security in many 
regions of India (Patra et al., 2025). Its spatial 
distribution and production intensity are shaped by a 

complex interplay of climatic conditions, land suitability, 
irrigation infrastructure, and policy interventions (Xing 
et al., 2025). Understanding how paddy production 
zones evolve is essential for optimizing land use and 
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guiding sustainable agricultural planning (Zhang et 
al., 2024). This study investigates the temporal and 
spatial dynamics of paddy production and cropping 
efficiency zones across two decades, offering insights 
into the changing landscape of paddy cultivation.

The classification of districts into Primary, 
Secondary, Tertiary, and Other production zones 
provide a foundational view of how agricultural 
engagement has shifted. In the first decade, a majority 
of districts fell under the “Others” category, indicating 
limited or negligible paddy activity (Losch et al., 2012). 
However, the second decade witnessed a dramatic 
reorganization, with most districts transitioning into 
structured production zones. This shift suggests a 
growing emphasis on paddy cultivation, possibly driven 
by targeted development programs and improved 
access to agricultural inputs (Becker & Angulo, 2019).

Beyond production volume, the efficiency of 
cropping practices plays a critical role in determining 
long-term sustainability (Shah & Wu,2019). The study 
incorporates cropping efficiency zones, High Intensity 
Cropping Zone (HICZ), Non-Effective Cropping Zone 
(NECZ), Medium Efficiency Cropping Zone (MECZ), 
and Efficient Cropping Zone (ECZ), to assess how 
well districts utilize their agricultural potential. The 
expansion of HICZ and NECZ classifications in the 
second decade reflects both progress and emerging 
challenges in maintaining productivity across diverse 
agro-climatic regions (Roy et al., 2023).

To further understand the direction and 
significance of these changes, the Mann-Kendall 
trend test was applied to detect monotonic trends in 
cropping efficiency (Li et al., 2025). Results revealed 
a notable increase in districts showing significant and 
non-significant decreasing trends, particularly within 
HICZ and NECZ zones. These findings highlight areas 
where cropping intensity may be declining, signaling 
the need for renewed focus on resource management 
and agronomic support (Zou et al., 2024).

Complementing the trend analysis, a machine 
learning model was developed to classify districts into 
efficiency zones based on relevant features (Huang 
et al., 2023). The model achieved perfect accuracy, 
precision, and recall, successfully distinguishing 
between HICZ and NECZ districts. While the results 
are promising, they also underscore the importance 
of validating predictive models with independent 
datasets to ensure reliability and avoid overfitting 
(Aliferis & Simon, 2024).

Overall, this study presents a comprehensive view 
of the evolving paddy cultivation landscape, detailing 
the foundational shift that occurred over the last two 
decades: the dramatic expansion of paddy production 
across Telangana. By integrating spatial classification, 
trend analysis, and predictive modeling, it offers a 
robust framework for identifying high-performing 
zones, diagnosing inefficiencies, and guiding future 
agricultural strategies. The findings aim to support 
policymakers, researchers, and practitioners in 
making informed decisions that enhance productivity 
while promoting sustainable land use.

MATERIALS AND METHODS

Study Area and Data Collection

This study was carried out in the Indian state of 
Telangana, which comprises 33 districts and features 
a diverse agroecological landscape ranging from semi-
arid to sub-humid zones (Fig. 1). Telangana is recognized 
as a central rice-producing region, making it an ideal 
location for examining long-term trends in agricultural 
performance and cropping efficiency. To analyze 
changes in paddy cultivation over time, district-level 
data were collected for 20 years spanning from 2000 
to 2020. For comparative analysis, this timeframe was 
divided into two distinct decades: 2000–2010 (Decade 
1) and 2011–2020 (Decade 2). The dataset includes 
information on the area under paddy cultivation, total 
production, and yield per hectare across all districts. 
These records were obtained from the Directorate of 
Economics and Statistics, Ministry of Agriculture and 
Farmers Welfare, Government of India. This decade-
wise segmentation enables a detailed evaluation of 
shifts in cropping patterns, productivity, and regional 
agricultural dynamics within the state.

Classification of Production Zones

Districts were categorized into four Production 
Zones. Primary, Secondary, Tertiary, and Others, based 
on normalized values of area and yield, Murthy et al. 
(2007). The classification was guided by a composite 
Zone Score (Zi), calculated using the formula (Equation 
1):

                     (1)

Where:

Zi = Zone score for district i

Ai = Area under paddy in district i

Yi = Yield in district i
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FFiigg  11..  SSttuuddyy  AArreeaa  MMaapp  
  
  
  
CCllaassssiiffiiccaattiioonn  ooff  PPrroodduuccttiioonn  ZZoonneess  
Districts were categorized into four Production Zones. Primary, Secondary, Tertiary, and Others, based on 
normalized values of area and yield, Murthy et al. (2007). The classification was guided by a composite Zone 
Score (Zi), calculated using the formula (Equation 1): 

                     (1) 

Where: 
 Zi = Zone score for district i 
 Ai = Area under paddy in district i 
 Yi = Yield in district i 
 = Mean area and yield across all districts 

 = Standard deviation of area and yield 

  
  
CCllaassssiiffiiccaattiioonn  ooff  CCrrooppppiinngg  EEffffiicciieennccyy  ZZoonneess 

Fig 1. Study Area Map

= Mean area and yield across all districts

= Standard deviation of area and yield

Classification of Cropping Efficiency Zones

To evaluate cropping efficiency across districts, a 
composite index was developed incorporating three 
critical indicators: Cropping Intensity (CI), which reflects 
the extent of land utilization for multiple cropping 
cycles; Input Usage Score (IS), which accounts for the 
application of key agricultural inputs such as fertilizers 
and irrigation; and the Yield Stability Index (YS), which 
measures the consistency of crop yields over time, 
based on inter-annual variability. These indicators 
were standardized and combined to compute an 
overall Efficiency Score (Ei) for each district. The score 
was calculated using the formula (Equation 2):

                 
                     (2)

Where:
Ei = Efficiency score for district i
CIi = Cropping intensity
ISi = Normalized input usage score
YSi = Yield stability index

Districts were then classified into four Cropping 
Efficiency Zones using criteria adapted from Kokilavani 
and Geethalakshmi (2013) (Table 1):

Table 1. Classification Criteria for Cropping 
Efficiency Zones Based on RSI and RYI 
Thresholds

RSI > 100 RYI > 100 Cropping Zone
Yes Yes Most Efficient Cropping 

Zone (MECZ)
Yes No Efficient Cropping Zone 

(ECZ)
No Yes Not Efficient Cropping 

Zone (NECZ)
No No Highly Inefficient Cropping 

Zone (HICZ)

Where:

RSI = Relative Spread Index

RYI = Relative Yield Index

These indices were calculated as (Equation 3):

                (3)
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This classification enabled a nuanced 
understanding of cropping performance across 
districts and decades.

Trend Analysis

To detect long-term trends in cropping efficiency, 
the Mann–Kendall (MK) test was employed. This 
nonparametric test is widely used to identify monotonic 
trends in time-series data without requiring normality 
(Kendall, 1975; Mann, 1945; Tabari et al., 2011).

The test statistic S is calculated as (Equations 4 &5):

               (4)

Where

              (5)

The significance of the trend is determined using 
the Z-statistic, and the proper slope (rate of change per 
unit time) was estimated using Sen’s slope estimator.

Machine Learning-Based Classification of 
Cropping Efficiency Zones

To enhance the classification of cropping efficiency 
zones across districts, a supervised machine learning 
approach was employed using a Random Forest 
classifier. This model was designed to predict whether 
a district was in a High Intensity Cropping Zone (HICZ) 
or a Non-Effective Cropping Zone (NECZ) based on a set 
of agronomic and environmental features. Key input 
variables included cropping intensity, yield variability, 
input usage (such as fertilizer and irrigation), and 
rainfall and irrigation coverage. These features were 
selected for their relevance in influencing agricultural 
performance and sustainability. The model was 
trained using labeled data from the second decade 
(2011–2020), allowing it to learn patterns and 
relationships between the input features and zone 
classifications. To assess its predictive capability, the 
model was evaluated using standard performance 
metrics, including precision, recall, F1-score, and a 
confusion matrix. These metrics provided insights into 
the classification’s accuracy and reliability. Overall, 
the Random Forest approach proved effective in 
identifying the key drivers of cropping efficiency and 
offered a robust framework for spatial decision-making 
in agricultural planning.

RESULTS AND DISCUSSION

Temporal Shift in Paddy Production Zones

The classification of districts into paddy production 
zones over two decades reveals a significant 
reorganization in agricultural engagement (Table 2 & 
Fig. 2). In Decade 1, only 9 out of 33 districts were 
actively involved in structured paddy cultivation, 
distributed evenly across the Primary, Secondary, 
and Tertiary zones. The remaining 24 districts were 
categorized as Others, indicating minimal or no paddy 
production activity. By Decade 2, the landscape had 
shifted dramatically. The number of districts in the 
Primary zone doubled, while both Secondary and 
Tertiary zones saw more than a fourfold increase. 
This expansion reflects a widespread adoption of 
paddy cultivation practices, likely supported by 
improved access to irrigation, agricultural inputs, and 
institutional support (Chang et al., 2024). The Others 
category dropped to just one district, suggesting that 
nearly the entire region had transitioned into active 
production zones. This transformation highlights a 
positive trajectory in regional agricultural development. 
The growth in Secondary and Tertiary zones suggests 
not only an increase in production but also a 
diversification in cropping intensity. Districts that were 
previously marginal or underutilized have become 
integral to the paddy production framework, indicating 
successful policy interventions and enhanced farmer 
participation (Dey & Singh, 2025). Overall, the data 
underscores a shift from limited cultivation toward a 
more structured and inclusive agricultural system.

Table 2.  Number of districts under different 
production zones of Paddy

Production Zone
Number of Districts

Decade1
(2001-2010)

Decade2
(2011-2020)

Primary 3 6
Secondary 3 13

Tertiary 3 13
Others 24 1
Total 33 33

Expansion of Cropping Efficiency Zones Over 
Time

The classification of districts into cropping 
efficiency zones over two decades reveals a significant 
transformation in agricultural performance across 



Madras Agric.J.,2026; https://doi.org/10.29321/MAJ.10.D01261                           

113| 1-3 |5

Telangana (Table 3). In Decade 1 (2001–2010), only 
5 districts were categorized under the High Intensity 
Cropping Zone (HICZ), while a substantial 23 districts 
fell into the Highly Inefficient category, indicating 
widespread limitations in paddy productivity and 
resource utilization. Additionally, 5 districts were 
identified as part of the Non-Effective Cropping Zone 
(NECZ), reflecting moderate efficiency levels. By 
Decade 2 (2011–2020), the landscape had shifted 
dramatically. The number of districts in HICZ surged 
to 17, suggesting notable improvements in cropping 
intensity, input management, and yield stability. 
Simultaneously, the Highly Inefficient category was 
eliminated entirely, with no districts remaining in 
that classification. The NECZ also expanded to 16 
districts, indicating that while many regions improved, 
a significant portion still exhibited limited efficiency 
(Shen et al., 2013). This shift underscores the impact 
of targeted agricultural interventions, improved 
infrastructure, and adaptive farming practices. 

However, the rise in NECZ districts also underscores 
the need for continued support and strategic planning 
to ensure that all regions benefit equally from advances 
in agricultural efficiency.

Integration of Cropping Efficiency Zones Across 
Production Landscapes

The comparative analysis of paddy cropping 
efficiency zones between Decade 1 (2001–2010) and 
Decade 2 (2011–2020) reveals a substantial shift in 
the spatial distribution of agricultural performance 
across Telangana (Table 4 & Fig 3). In Decade 1, only 5 
districts were classified as the High Cropping Efficiency 
Zone (HCEZ), with the majority falling into the “Others” 
category, indicating either low efficiency or a lack of 
classification. The Primary zone was dominated by 
Non-Effective Cropping Zones (NECZ), with no districts 
in HCEZ, while the Secondary and Tertiary zones 
showed minimal representation of high-efficiency 
districts. By Decade 2, the landscape had transformed 
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FFiigg    22..  SSppaattiiaall  RReeoorrggaanniizzaattiioonn  ooff  PPaaddddyy  PPrroodduuccttiioonn  ZZoonneess  iinn  TTeellaannggaannaa  AAccrroossss  TTwwoo  DDeeccaaddeess  
 
EExxppaannssiioonn  ooff  CCrrooppppiinngg  EEffffiicciieennccyy  ZZoonneess  OOvveerr  TTiimmee  
The classification of districts into cropping efficiency zones over two decades reveals a significant 
transformation in agricultural performance across Telangana (Table 3). In Decade 1 (2001–2010), only 5 
districts were categorized under the High Intensity Cropping Zone (HICZ), while a substantial 23 districts fell 
into the Highly Inefficient category, indicating widespread limitations in paddy productivity and resource 
utilization. Additionally, 5 districts were identified as part of the Non-Effective Cropping Zone (NECZ), reflecting 
moderate efficiency levels. By Decade 2 (2011–2020), the landscape had shifted dramatically. The number of 
districts in HICZ surged to 17, suggesting notable improvements in cropping intensity, input management, and 
yield stability. Simultaneously, the Highly Inefficient category was eliminated entirely, with no districts 
remaining in that classification. The NECZ also expanded to 16 districts, indicating that while many regions 
improved, a significant portion still exhibited limited efficiency (Shen et al., 2013). This shift underscores the 
impact of targeted agricultural interventions, improved infrastructure, and adaptive farming practices. 
However, the rise in NECZ districts also underscores the need for continued support and strategic planning to 
ensure that all regions benefit equally from advances in agricultural efficiency. 

  
TTaabbllee  33..  NNuummbbeerr  ooff  ddiissttrriiccttss  uunnddeerr  ddiiffffeerreenntt  ccrrooppppiinngg  eeffffiicciieenntt  zzoonneess  ooff  PPaaddddyy  

 
Efficiency Zones 

Number of Districts 
Decade1 

(2001-2010) 
Decade2 

(2011-2020) 
HICZ (High Intensity Cropping Zone) 5 17 
NECZ (Non-Effective Cropping Zone) 5 16 

Highly Inefficient (HICZ) 23 0 
Total 33 33 

 
IInntteeggrraattiioonn  ooff  CCrrooppppiinngg  EEffffiicciieennccyy  ZZoonneess  AAccrroossss  PPrroodduuccttiioonn  LLaannddssccaappeess  
The comparative analysis of paddy cropping efficiency zones between Decade 1 (2001–2010) and Decade 2 
(2011–2020) reveals a substantial shift in the spatial distribution of agricultural performance across 
Telangana (Table 4 & Fig 3). In Decade 1, only 5 districts were classified as the High Cropping Efficiency Zone 

Fig  2. Spatial Reorganization of Paddy Production Zones in Telangana Across Two Decades

Table 3. Number of districts under different cropping efficient zones of Paddy

Efficiency Zones
Number of Districts

Decade1
(2001-2010)

Decade2
(2011-2020)

HICZ (High Intensity Cropping Zone) 5 17
NECZ (Non-Effective Cropping Zone) 5 16

Highly Inefficient (HICZ) 23 0
Total 33 33
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significantly. The number of districts in HCEZ rose 
sharply to 16, with notable expansion into Primary 
(2 districts), Secondary (6 districts), and Tertiary 
zones (8 districts). Simultaneously, NECZ districts 
increased modestly from 5 to 17, suggesting broader 
but uneven improvements in cropping efficiency. The 
“Others” category, which previously encompassed 24 
districts, was reduced to a single district, indicating 

Table 4. Temporal dynamics of Kharif Paddy production zones (number of districts) with focus on 
efficient cropping zones (ECZ) over two decades

Zones
Decade1

(2001-2010)
Decade2

(2011-2020)
HCEZ NECZ Total HCEZ NECZ Total

Primary 0 3 3 2 4 6
Secondary 1 2 3 6 7 13

Tertiary 3 0 3 8 5 13
Others o 0 24 0 1 1
Total 5 5 33 16 17 33

Fig 3. Decadal Shift in Spatial Distribution of Paddy Cropping Efficiency Zones in Telangana

more comprehensive classification and performance 
tracking. This shift reflects the impact of targeted 
agricultural interventions, improved resource 
access, and adaptive farming practices, while also 
highlighting the need for continued support in NECZ 
regions to elevate them to higher-efficiency zones  
(Dixon et al., 2014).
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(HCEZ), with the majority falling into the “Others” category, indicating either low efficiency or a lack of 
classification. The Primary zone was dominated by Non-Effective Cropping Zones (NECZ), with no districts in 
HCEZ, while the Secondary and Tertiary zones showed minimal representation of high-efficiency districts. By 
Decade 2, the landscape had transformed significantly. The number of districts in HCEZ rose sharply to 16, 
with notable expansion into Primary (2 districts), Secondary (6 districts), and Tertiary zones (8 districts). 
Simultaneously, NECZ districts increased modestly from 5 to 17, suggesting broader but uneven improvements 
in cropping efficiency. The “Others” category, which previously encompassed 24 districts, was reduced to a 
single district, indicating more comprehensive classification and performance tracking. This shift reflects the 
impact of targeted agricultural interventions, improved resource access, and adaptive farming practices, while 
also highlighting the need for continued support in NECZ regions to elevate them to higher-efficiency zones 
(Dixon et al., 2014).  

  
TTaabbllee  44..  TTeemmppoorraall  ddyynnaammiiccss  ooff  KKhhaarriiff  PPaaddddyy  pprroodduuccttiioonn  zzoonneess  ((nnuummbbeerr  ooff  ddiissttrriiccttss))  wwiitthh  ffooccuuss  oonn  eeffffiicciieenntt  

ccrrooppppiinngg  zzoonneess  ((EECCZZ))  oovveerr  ttwwoo  ddeeccaaddeess  
 

Zones 
Decade1 

(2001-2010) 
Decade2 

(2011-2020) 
HCEZ NECZ Total HCEZ NECZ Total 

Primary 0 3 3 2 4 6 
Secondary 1 2 3 6 7 13 

Tertiary 3 0 3 8 5 13 
Others o 0 24 0 1 1 
Total 5 5 33 16 17 33 

 
 

 
  
  

FFiigg  33..  DDeeccaaddaall  SShhiifftt  iinn  SSppaattiiaall  DDiissttrriibbuuttiioonn  ooff  PPaaddddyy  CCrrooppppiinngg  EEffffiicciieennccyy  ZZoonneess  iinn  TTeellaannggaannaa  
  
  

TTeemmppoorraall  TTrreennddss  iinn  CCrrooppppiinngg  EEffffiicciieennccyy  ZZoonneess  BBaasseedd  oonn  tthhee  MMaannnn--KKeennddaallll  TTeesstt  
The trend analysis of cropping efficiency zones from 2001–2010 (Decade 1) to 2011–2020 (Decade 2) 
reveals a dynamic shift in agricultural performance across districts. In the Most Efficient Cropping Zone 
(MECZ),, there was a slight decline in the number of districts showing significant and non-significant increasing 
trends, dropping from 2 to 1 and from 3 to 2, respectively (Table 5 & Fig 4). Simultaneously, districts with 

Temporal Trends in Cropping Efficiency Zones 
Based on the Mann-Kendall Test

The trend analysis of cropping efficiency zones 
from 2001–2010 (Decade 1) to 2011–2020 (Decade 
2) reveals a dynamic shift in agricultural performance 
across districts. In the Most Efficient Cropping Zone 
(MECZ), there was a slight decline in the number 
of districts showing significant and non-significant 
increasing trends, dropping from 2 to 1 and from 3 
to 2, respectively (Table 5 & Fig 4). Simultaneously, 
districts with decreasing trends rose, indicating a 

mild regression in top-performing areas. The Efficient 
Cropping Zone (ECZ) followed a similar pattern, with 
a reduction in increasing trends and a rise in both 
significant and non-significant decreasing trends, 
suggesting that some previously stable districts may 
be experiencing challenges in sustaining efficiency. 
In contrast, the Not Efficient Cropping Zone (NECZ) 
showed a modest increase in districts with decreasing 
trends, while those with increasing trends remained 
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relatively stable, pointing to limited progress in these 
regions. The most notable change occurred in the 
Highly Inefficient Cropping Zone (HICZ), where districts 
with significant increasing trends dropped from 2 to 
none, and those with significant decreasing trends rose 
from 2 to 3. This shift highlights a concerning decline 
in performance among the least efficient districts. 

Table 5. Decadal Trends in Cropping Efficiency Zones in Telangana

Cropping Efficiency Zone Trend Type Decade1
(2001-2010)

Decade2
(2011-2020)

MECZ (Most Efficient)

Significant Increasing 2 1
Non-significant Increasing 3 2
Non-significant Decreasing 2 3

Significant Decreasing 1 2

ECZ (Efficient)

Significant Increasing 2 1
Non-significant Increasing 3 2
Non-significant Decreasing 3 4

Significant Decreasing 2 3

NECZ (Not Efficient)

Significant Increasing 1 1
Non-significant Increasing 3 2
Non-significant Decreasing 4 5

Significant Decreasing 2 3

HICZ (Highly Inefficient)

Significant Increasing 2 0
Non-significant Increasing 0 0
Non-significant Decreasing 1 1

Significant Decreasing 2 3

Fig 4. Decadal Trends in Directional Shifts of Cropping Efficiency Zones in Telangana
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FFiigg  44.. DDeeccaaddaall  TTrreennddss  iinn  DDiirreeccttiioonnaall  SShhiiffttss  ooff  CCrrooppppiinngg  EEffffiicciieennccyy  ZZoonneess  iinn  TTeellaannggaannaa  
  

PPeerrffoorrmmaannccee  ooff  MMaacchhiinnee  LLeeaarrnniinngg  CCllaassssiiffiiccaattiioonn  ffoorr  PPaaddddyy  EEffffiicciieennccyy  ZZoonneess  
The machine learning model used to classify paddy efficiency zones achieved perfect performance across all 
evaluation metrics. As shown in Table 6 & Fig. 5, both HICZ and NECZ classes recorded a precision,, recall,, and 
F1-score of 1.00,, indicating that every district was correctly identified without error (Guhan et al., 2025). Out of 
a total of 395 districts,,  202 were classified as HICZ and 193 as NECZ. The model's overall accuracy, which was 
100%, with both macro and weighted averages also achieving perfect scores. These results suggest that the 
model was highly effective in distinguishing between efficient and inefficient cropping zones. Such flawless 
classification implies that the input features, likely including spatial, agronomic, and productivity indicators, 
were highly informative and well-separated. The model's ability to consistently identify zone types with no 
misclassifications demonstrates its potential as a reliable tool for agricultural zoning and decision-making 
(Guhan et al., 2025). However, while the results are impressive, they also warrant careful interpretation. 
Perfect scores may indicate that the model was evaluated on training data or lacked exposure to unseen 
variability (Varoquaux & Colliot., 2023). To ensure robustness and generalizability, further validation using 
cross-validation or independent test sets is recommended. In practical terms, this model can support 
agricultural planning by accurately identifying zones that require intervention or support. Its precision can help 
policymakers allocate resources more effectively and monitor changes in cropping efficiency over time 
(Nabansu Chattopadhyay., 2023). 

TTaabbllee  66..  MMaacchhiinnee  LLeeaarrnniinngg  CCllaassssiiffiiccaattiioonn  ooff  PPaaddddyy  EEffffiicciieennccyy  ZZoonneess 
Zone Precision Recall F1-Score Support 
HICZ 1.00 1.00 1.00 202 
NECZ 1.00 1.00 1.00 193 

Accuracy – – 1.00 395 
Macro Avg 1.00 1.00 1.00 395 

Weighted Avg 1.00 1.00 1.00 395 
 
 

Overall, while some zones maintained or slightly 
improved their efficiency, the broader trend suggests 
a need to sustain gains in high-performing areas and 
reverse declines in vulnerable zones through targeted 
interventions and adaptive agricultural strategies 
(Deakin & Reid., 2018).
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Performance of Machine Learning Classification 
for Paddy Efficiency Zones

The machine learning model used to classify paddy 
efficiency zones achieved perfect performance across 
all evaluation metrics. As shown in Table 6 & Fig. 5, both 
HICZ and NECZ classes recorded a precision, recall, 
and F1-score of 1.00, indicating that every district was 
correctly identified without error (Guhan et al., 2025). 
Out of a total of 395 districts, 202 were classified as HICZ 
and 193 as NECZ. The model’s overall accuracy, which 
was 100%, with both macro and weighted averages 
also achieving perfect scores. These results suggest 
that the model was highly effective in distinguishing 
between efficient and inefficient cropping zones. Such 
flawless classification implies that the input features, 
likely including spatial, agronomic, and productivity 
indicators, were highly informative and well-separated. 
The model’s ability to consistently identify zone types 

with no misclassifications demonstrates its potential 
as a reliable tool for agricultural zoning and decision-
making (Guhan et al., 2025). However, while the 
results are impressive, they also warrant careful 
interpretation. Perfect scores may indicate that 
the model was evaluated on training data or lacked 
exposure to unseen variability (Varoquaux & Colliot., 
2023). To ensure robustness and generalizability, 
further validation using cross-validation or independent 
test sets is recommended. In practical terms, this 
model can support agricultural planning by accurately 
identifying zones that require intervention or support. 
Its precision can help policymakers allocate resources 
more effectively and monitor changes in cropping 
efficiency over time (Nabansu Chattopadhyay., 2023).

CONCLUSION

The study reveals a profound transformation in 

Table 6. Machine Learning Classification of Paddy Efficiency Zones

Zone Precision Recall F1-Score Support
HICZ 1.00 1.00 1.00 202
NECZ 1.00 1.00 1.00 193

Accuracy – – 1.00 395
Macro Avg 1.00 1.00 1.00 395

Weighted Avg 1.00 1.00 1.00 395

Fig 5. Performance Evaluation of Machine Learning Model for Paddy Cropping Efficiency Zone 
Classification

Madras Agric.J.,2026;  https://doi.org/10.29321/MAJ.10.D01261                            

Plagiarism = 11% 
 

Vol 113|1-3- pg 

 
  

FFiigg  55..  PPeerrffoorrmmaannccee  EEvvaalluuaattiioonn  ooff  MMaacchhiinnee  LLeeaarrnniinngg  MMooddeell  ffoorr  PPaaddddyy  CCrrooppppiinngg  EEffffiicciieennccyy  ZZoonnee  CCllaassssiiffiiccaattiioonn  
  

Conclusion 
The study reveals a profound transformation in paddy production and cropping efficiency across Telangana 
over two decades (2001–2020). Initially, only 9 of 33 districts were actively engaged in structured paddy 
cultivation, with the majority (24) falling into the “Others” category, indicating minimal agricultural activity. By 
Decade 2, the number of active districts surged to 32, with Secondary and Tertiary zones expanding from 3 to 
13 districts each. This shift reflects the widespread adoption of paddy farming practices, supported by 
improved irrigation, access to inputs, and institutional support. Cropping efficiency zones also evolved 
significantly: High Intensity Cropping Zone (HICZ) districts increased from 5 to 17, while Highly Inefficient zones 
were eliminated entirely (from 23 to 0). However, the rise in Non-Effective Cropping Zones (NECZ) from 5 to 16 
suggests uneven progress and requires targeted interventions. Trend analysis using the Mann-Kendall test 
showed a decline in increasing trends within the Most Efficient Cropping Zone (MECZ), dropping from 5 
districts in Decade 1 to 3 in Decade 2, while decreasing trends rose from 3 to 5. A machine learning model 
trained on 395 districts demonstrated perfect classification performance, with a precision, recall, and F1-score 
of 1.00 for both HICZ (202 districts) and NECZ (193 districts), and an overall accuracy of 100%. These results 
underscore the model’s potential for reliable agricultural zoning and decision-making. However, further 
validation using independent test sets is essential to ensure robustness. While this study focused on crop-
based indicators, future research will integrate long-term climatic data, such as rainfall, temperature, and 
moisture indices, aligned with the critical phenological stages of paddy. This integrated approach will enhance 
the precision of agro-advisory services and support climate-resilient agricultural planning across diverse 
production landscapes. 
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Telangana over two decades (2001–2020). Initially, 
only 9 of 33 districts were actively engaged in 
structured paddy cultivation, with the majority (24) 
falling into the “Others” category, indicating minimal 
agricultural activity. By Decade 2, the number of active 
districts surged to 32, with Secondary and Tertiary 
zones expanding from 3 to 13 districts each. This shift 
reflects the widespread adoption of paddy farming 
practices, supported by improved irrigation, access to 
inputs, and institutional support. Cropping efficiency 
zones also evolved significantly: High Intensity 
Cropping Zone (HICZ) districts increased from 5 to 17, 
while Highly Inefficient zones were eliminated entirely 
(from 23 to 0). However, the rise in Non-Effective 
Cropping Zones (NECZ) from 5 to 16 suggests uneven 
progress and requires targeted interventions. Trend 
analysis using the Mann-Kendall test showed a decline 
in increasing trends within the Most Efficient Cropping 
Zone (MECZ), dropping from 5 districts in Decade 1 to 
3 in Decade 2, while decreasing trends rose from 3 to 
5. A machine learning model trained on 395 districts 
demonstrated perfect classification performance, 
with a precision, recall, and F1-score of 1.00 for both 
HICZ (202 districts) and NECZ (193 districts), and an 
overall accuracy of 100%. These results underscore 
the model’s potential for reliable agricultural zoning 
and decision-making. However, further validation 
using independent test sets is essential to ensure 
robustness. While this study focused on crop-based 
indicators, future research will integrate long-term 
climatic data, such as rainfall, temperature, and 
moisture indices, aligned with the critical phenological 
stages of paddy. This integrated approach will enhance 
the precision of agro-advisory services and support 
climate-resilient agricultural planning across diverse 
production landscapes.
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