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ABSTRACT

This study presents a comprehensive assessment of paddy cropping
efficiency and production zones across 33 districts in Telangana, India,
over two decades (2001-2020). The research integrates production zone
dynamics, trend analysis, and machine learning classification to reveal
significant agricultural and spatial development. Over the two-decade period,
districts engaged in structured paddy cultivation increased dramatically.
In Decade 1 (2001-2010), only 9 districts engaged in structured paddy
cultivation, while 24 remained in the “Others” category. By Decade 2(2011-
2020), active production zones expanded significantly, with Primary zone

Revised: 27 Dec 2025 districts doubling from 3 to 6, and both Secondary and Tertiary zones
increasing more than fourfold, from 3 to 13 each. Cropping efficiency zones
also underwent major transformation: High Intensity Cropping Zone (HICZ)
districts rose from 5 to 17, while Highly Inefficient districts dropped from 23
to zero. The Mann-Kendall trend test revealed a decline in increasing trends
within the Most Efficient Cropping Zone (MECZ), from 5 districts in Decade
1 to 3 in Decade 2, while decreasing trends rose from 3 to 5. A machine
learning model trained on 395 districts achieved perfect classification
performance, with precision, recall, and F1 Scores precision, recall, and F1-
score of 1.00 for both HICZ and NECZ. These findings highlight a positive
trajectory in agricultural engagement and efficiency, while emphasizing the
need for continued support in moderately performing zones and validation of
predictive tools for broader application.
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INTRODUCTION

Paddy cultivation remains a cornerstone of complexinterplay of climatic conditions, land suitability,
agricultural livelihoods and food security in many irrigation infrastructure, and policy interventions (Xing
regions of India (Patra et al., 2025). Its spatial et al.,, 2025). Understanding how paddy production
distribution and production intensity are shaped by a  zones evolve is essential for optimizing land use and
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guiding sustainable agricultural planning (Zhang et
al., 2024). This study investigates the temporal and
spatial dynamics of paddy production and cropping
efficiency zones across two decades, offering insights
into the changing landscape of paddy cultivation.

The classification of districts into Primary,
Secondary, Tertiary, and Other production zones
provide a foundational view of how agricultural
engagement has shifted. In the first decade, a majority
of districts fell under the “Others” category, indicating
limited or negligible paddy activity (Losch et al., 2012).
However, the second decade witnessed a dramatic
reorganization, with most districts transitioning into
structured production zones. This shift suggests a
growing emphasis on paddy cultivation, possibly driven
by targeted development programs and improved
access to agricultural inputs (Becker & Angulo, 2019).

Beyond production volume, the efficiency of
cropping practices plays a critical role in determining
long-term sustainability (Shah & Wu,2019). The study
incorporates cropping efficiency zones, High Intensity
Cropping Zone (HICZ), Non-Effective Cropping Zone
(NECZ), Medium Efficiency Cropping Zone (MECZ),
and Efficient Cropping Zone (ECZ), to assess how
well districts utilize their agricultural potential. The
expansion of HICZ and NECZ classifications in the
second decade reflects both progress and emerging
challenges in maintaining productivity across diverse
agro-climatic regions (Roy et al., 2023).

To further understand the direction and
significance of these changes, the Mann-Kendall
trend test was applied to detect monotonic trends in
cropping efficiency (Li et al., 2025). Results revealed
a notable increase in districts showing significant and
non-significant decreasing trends, particularly within
HICZ and NECZ zones. These findings highlight areas
where cropping intensity may be declining, signaling
the need for renewed focus on resource management
and agronomic support (Zou et al., 2024).

Complementing the trend analysis, a machine
learning model was developed to classify districts into
efficiency zones based on relevant features (Huang
et al., 2023). The model achieved perfect accuracy,
precision, and recall, successfully distinguishing
between HICZ and NECZ districts. While the results
are promising, they also underscore the importance
of validating predictive models with independent
datasets to ensure reliability and avoid overfitting
(Aliferis & Simon, 2024).

Overall, this study presents a comprehensive view
of the evolving paddy cultivation landscape, detailing
the foundational shift that occurred over the last two
decades: the dramatic expansion of paddy production
across Telangana. By integrating spatial classification,
trend analysis, and predictive modeling, it offers a
robust framework for identifying high-performing
zones, diagnosing inefficiencies, and guiding future
agricultural strategies. The findings aim to support
policymakers, researchers, and practitioners in
making informed decisions that enhance productivity
while promoting sustainable land use.

MATERIALS AND METHODS
Study Area and Data Collection

This study was carried out in the Indian state of
Telangana, which comprises 33 districts and features
a diverse agroecological landscape ranging from semi-
aridtosub-humidzones (Fig. 1). Telanganaisrecognized
as a central rice-producing region, making it an ideal
location for examining long-term trends in agricultural
performance and cropping efficiency. To analyze
changes in paddy cultivation over time, district-level
data were collected for 20 years spanning from 2000
to 2020. For comparative analysis, this timeframe was
divided into two distinct decades: 2000-2010 (Decade
1) and 2011-2020 (Decade 2). The dataset includes
information on the area under paddy cultivation, total
production, and yield per hectare across all districts.
These records were obtained from the Directorate of
Economics and Statistics, Ministry of Agriculture and
Farmers Welfare, Government of India. This decade-
wise segmentation enables a detailed evaluation of
shifts in cropping patterns, productivity, and regional
agricultural dynamics within the state.

Classification of Production Zones

Districts were categorized into four Production
Zones. Primary, Secondary, Tertiary, and Others, based
on normalized values of area and yield, Murthy et al.
(2007). The classification was guided by a composite
Zone Score (Zi), calculated using the formula (Equation
1):

Ai—Eg + ?l:_-u'll_'
i (1)

5 =
Where:

Zi = Zone score for district i

Ai = Area under paddy in district i
Yi = Yield in district i
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Fig 1. Study Area Map

Haly = Mean area and yield across all districts

%4, %= Standard deviation of area and yield

Classification of Cropping Efficiency Zones

To evaluate cropping efficiency across districts, a
composite index was developed incorporating three
critical indicators: Cropping Intensity (Cl), which reflects
the extent of land utilization for multiple cropping
cycles; Input Usage Score (IS), which accounts for the
application of key agricultural inputs such as fertilizers
and irrigation; and the Yield Stability Index (YS), which
measures the consistency of crop yields over time,
based on inter-annual variability. These indicators
were standardized and combined to compute an
overall Efficiency Score (Ei) for each district. The score
was calculated using the formula (Equation 2):

E = s ri;ﬂ’s; 2)
Where:

Ei = Efficiency score for district i

Cli = Cropping intensity

ISi = Normalized input usage score

YSi = Yield stability index

Districts were then classified into four Cropping
Efficiency Zones using criteria adapted from Kokilavani
and Geethalakshmi (2013) (Table 1):

Table 1. Classification Criteria for Cropping

Ril =

Efficiency Zones Based on RSI and RYI
Thresholds
RSI > 100 RYI> 100 Cropping Zone
Yes Yes Most Efficient Cropping
Zone (MEC2)
Yes No Efficient Cropping Zone
(EC2)
No Yes Not Efficient Cropping
Zone (NEC2)
No No Highly Inefficient Cropping
Zone (HICZ)
Where:

RSI = Relative Spread Index
RYI = Relative Yield Index

These indices were calculated as (Equation 3):

istrict Area

istrict Yield
— ) X100, RyT = (32000

Mean Yield J X100 (3)
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This classification enabled a nuanced
understanding of cropping performance across
districts and decades.

Trend Analysis

To detect long-term trends in cropping efficiency,
the Mann-Kendall (MK) test was employed. This
nonparametric test is widely used to identify monotonic
trends in time-series data without requiring normality
(Kendall, 1975; Mann, 1945; Tabari et al., 2011).

The test statistic S is calculated as (Equations 4 &5):

S=EtE i sgn (x;—x;) (4)
Where

+1 ifx;> o
sgn {:cj- - :cl-} = { 0 if xp =y

-1 iij_ = x; (5)

The significance of the trend is determined using
the Z-statistic, and the proper slope (rate of change per
unit time) was estimated using Sen’s slope estimator.

Machine Learning-Based Classification of
Cropping Efficiency Zones

To enhance the classification of cropping efficiency
zones across districts, a supervised machine learning
approach was employed using a Random Forest
classifier. This model was designed to predict whether
a district was in a High Intensity Cropping Zone (HICZ)
ora Non-Effective Cropping Zone (NECZ) based on a set
of agronomic and environmental features. Key input
variables included cropping intensity, yield variability,
input usage (such as fertilizer and irrigation), and
rainfall and irrigation coverage. These features were
selected for their relevance in influencing agricultural
performance and sustainability. The model was
trained using labeled data from the second decade
(2011-2020), allowing it to learn patterns and
relationships between the input features and zone
classifications. To assess its predictive capability, the
model was evaluated using standard performance
metrics, including precision, recall, F1-score, and a
confusion matrix. These metrics provided insights into
the classification’s accuracy and reliability. Overall,
the Random Forest approach proved effective in
identifying the key drivers of cropping efficiency and
offered a robust framework for spatial decision-making
in agricultural planning.

RESULTS AND DISCUSSION
Temporal Shift in Paddy Production Zones

The classification of districts into paddy production
zones over two decades reveals a significant
reorganization in agricultural engagement (Table 2 &
Fig. 2). In Decade 1, only 9 out of 33 districts were
actively involved in structured paddy -cultivation,
distributed evenly across the Primary, Secondary,
and Tertiary zones. The remaining 24 districts were
categorized as Others, indicating minimal or no paddy
production activity. By Decade 2, the landscape had
shifted dramatically. The number of districts in the
Primary zone doubled, while both Secondary and
Tertiary zones saw more than a fourfold increase.
This expansion reflects a widespread adoption of
paddy cultivation practices, likely supported by
improved access to irrigation, agricultural inputs, and
institutional support (Chang et al., 2024). The Others
category dropped to just one district, suggesting that
nearly the entire region had transitioned into active
production zones. This transformation highlights a
positive trajectory in regional agricultural development.
The growth in Secondary and Tertiary zones suggests
not only an increase in production but also a
diversification in cropping intensity. Districts that were
previously marginal or underutilized have become
integral to the paddy production framework, indicating
successful policy interventions and enhanced farmer
participation (Dey & Singh, 2025). Overall, the data
underscores a shift from limited cultivation toward a
more structured and inclusive agricultural system.

Table 2. Number of districts under different
production zones of Paddy

Number of Districts

Production Zone

Decadel Decade2
(2001-2010) (2011-2020)
Primary 3 6
Secondary 3 13
Tertiary 3 13
Others 24 1
Total 33 33

Expansion of Cropping Efficiency Zones Over
Time

The classification of districts into cropping
efficiency zones over two decades reveals a significant
transformation in agricultural performance across
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Fig 2. Spatial Reorganization of Paddy Production Zones in Telangana Across Two Decades

Telangana (Table 3). In Decade 1 (2001-2010), only
5 districts were categorized under the High Intensity
Cropping Zone (HICZ), while a substantial 23 districts
fell into the Highly Inefficient category, indicating
widespread limitations in paddy productivity and
resource utilization. Additionally, 5 districts were
identified as part of the Non-Effective Cropping Zone
(NECZ), reflecting moderate efficiency levels. By
Decade 2 (2011-2020), the landscape had shifted
dramatically. The number of districts in HICZ surged
to 17, suggesting notable improvements in cropping
intensity, input management, and yield stability.
Simultaneously, the Highly Inefficient category was
eliminated entirely, with no districts remaining in
that classification. The NECZ also expanded to 16
districts, indicating that while many regions improved,
a significant portion still exhibited limited efficiency
(Shen et al., 2013). This shift underscores the impact
of targeted agricultural interventions, improved
infrastructure, and adaptive farming practices.

However, the rise in NECZ districts also underscores
the need for continued support and strategic planning
to ensure that all regions benefit equally from advances
in agricultural efficiency.

Integration of Cropping Efficiency Zones Across
Production Landscapes

The comparative analysis of paddy cropping
efficiency zones between Decade 1 (2001-2010) and
Decade 2 (2011-2020) reveals a substantial shift in
the spatial distribution of agricultural performance
across Telangana (Table 4 & Fig 3). In Decade 1, only 5
districts were classified as the High Cropping Efficiency
Zone (HCEZ), with the majority falling into the “Others”
category, indicating either low efficiency or a lack of
classification. The Primary zone was dominated by
Non-Effective Cropping Zones (NECZ), with no districts
in HCEZ, while the Secondary and Tertiary zones
showed minimal representation of high-efficiency
districts. By Decade 2, the landscape had transformed

Table 3. Number of districts under different cropping efficient zones of Paddy

Number of Districts

Efficiency Zones Decadel Decade2
(2001-2010) (2011-2020)
HICZ (High Intensity Cropping Zone) 5 17
NECZ (Non-Effective Cropping Zone) 5 16
Highly Inefficient (HICZ) 23 0
Total 33 33
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significantly. The number of districts in HCEZ rose
sharply to 16, with notable expansion into Primary
(2 districts), Secondary (6 districts), and Tertiary
zones (8 districts). Simultaneously, NECZ districts
increased modestly from 5 to 17, suggesting broader
but uneven improvements in cropping efficiency. The
“Others” category, which previously encompassed 24
districts, was reduced to a single district, indicating

more comprehensive classification and performance
tracking. This shift reflects the impact of targeted
agricultural  interventions,  improved
access, and adaptive farming practices, while also
highlighting the need for continued support in NECZ
regions to elevate them to higher-efficiency zones
(Dixon et al., 2014).

resource

Table 4. Temporal dynamics of Kharif Paddy production zones (number of districts) with focus on

efficient cropping zones (ECZ) over two decades

Decadel Decade2
Zones (2001-2010) (2011-2020)
HCEZ NECZ Total HCEZ NECZ Total

Primary 0 3 3 2 4 6
Secondary 1 3 6 7 13
Tertiary 3 0 3 8 5 13
Others o} 0 24 0 1 1
Total 5 5 33 16 17 33

Distribution of Paddy efficient cropping zones (! 1)

Distribution of Paddy cropping zones (Decade2)
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Fig 3. Decadal Shift in Spatial Distribution of Paddy Cropping Efficiency Zones in Telangana

Temporal Trends in Cropping Efficiency Zones
Based on the Mann-Kendall Test

The trend analysis of cropping efficiency zones
from 2001-2010 (Decade 1) to 2011-2020 (Decade
2) reveals a dynamic shift in agricultural performance
across districts. In the Most Efficient Cropping Zone
(MECZ), there was a slight decline in the number
of districts showing significant and non-significant
increasing trends, dropping from 2 to 1 and from 3
to 2, respectively (Table 5 & Fig 4). Simultaneously,
districts with decreasing trends rose, indicating a

mild regression in top-performing areas. The Efficient
Cropping Zone (ECZ) followed a similar pattern, with
a reduction in increasing trends and a rise in both
significant and non-significant decreasing trends,
suggesting that some previously stable districts may
be experiencing challenges in sustaining efficiency.
In contrast, the Not Efficient Cropping Zone (NECZ)
showed a modest increase in districts with decreasing
trends, while those with increasing trends remained
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relatively stable, pointing to limited progress in these
regions. The most notable change occurred in the
Highly Inefficient Cropping Zone (HICZ), where districts
with significant increasing trends dropped from 2 to
none, and those with significant decreasing trends rose
from 2 to 3. This shift highlights a concerning decline
in performance among the least efficient districts.

Overall, while some zones maintained or slightly
improved their efficiency, the broader trend suggests
a need to sustain gains in high-performing areas and
reverse declines in vulnerable zones through targeted
interventions and adaptive agricultural strategies
(Deakin & Reid., 2018).

Table 5. Decadal Trends in Cropping Efficiency Zones in Telangana

Cropping Efficiency Zone Trend Type Decadel Decade2
(2001-2010) (2011-2020)
Significant Increasing 2 1
Non-significant Increasing 3 2
MECZ (Most Efficient) o .
Non-significant Decreasing 2 3
Significant Decreasing 1 2
Significant Increasing 2 1
Non-significant Increasing 3 2
ECZ (Efficient) L .
Non-significant Decreasing 3 4
Significant Decreasing 2 3
Significant Increasing 1 1
Non-significant Increasing 3 2
NECZ (Not Efficient) L .
Non-significant Decreasing 4 5
Significant Decreasing 2 3
Significant Increasing 2 0
Non-significant Increasing 0 0
HICZ (Highly Inefficient) o .
Non-significant Decreasing 1 1
Significant Decreasing 2 3
Trend of Kharif paddy under different prod zones (| del) Trend of Kharif paddy under different prod zones (| le2)

Latitude

Trend
== significant Increasing

3 Non-significant Increasing
B significant Decreasing
= Non-significant Decreasing
=3 others
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] Others

75 78.0 785 79.0 79.5 80.0 80.5 81.0 815

Longitude

75 78.0 785 79.0 79.5 80.0 80.5 81.0 815
Longitude

Fig 4. Decadal Trends in Directional Shifts of Cropping Efficiency Zones in Telangana
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Performance of Machine Learning Classification
for Paddy Efficiency Zones

The machine learning model used to classify paddy
efficiency zones achieved perfect performance across
all evaluation metrics. As shown in Table 6 & Fig. 5, both
HICZ and NECZ classes recorded a precision, recall,
and Fl-score of 1.00, indicating that every district was
correctly identified without error (Guhan et al., 2025).
Outofatotal of 395 districts, 202 were classifiedas HICZ
and 193 as NECZ. The model’s overall accuracy, which
was 100%, with both macro and weighted averages
also achieving perfect scores. These results suggest
that the model was highly effective in distinguishing
between efficient and inefficient cropping zones. Such
flawless classification implies that the input features,
likely including spatial, agronomic, and productivity
indicators, were highly informative and well-separated.
The model’s ability to consistently identify zone types

with no misclassifications demonstrates its potential
as a reliable tool for agricultural zoning and decision-
making (Guhan et al., 2025). However, while the
results are impressive, they also warrant careful
interpretation. Perfect scores may indicate that
the model was evaluated on training data or lacked
exposure to unseen variability (Varoquaux & Colliot.,
2023). To ensure robustness and generalizability,
furthervalidation using cross-validation orindependent
test sets is recommended. In practical terms, this
model can support agricultural planning by accurately
identifying zones that require intervention or support.
Its precision can help policymakers allocate resources
more effectively and monitor changes in cropping
efficiency over time (Nabansu Chattopadhyay., 2023).

CONCLUSION

The study reveals a profound transformation in

Table 6. Machine Learning Classification of Paddy Efficiency Zones

Zone Precision Recall F1-Score Support
HICZ 1.00 1.00 1.00 202
NECZ 1.00 1.00 1.00 193
Accuracy - - 1.00 395
Macro Avg 1.00 1.00 1.00 395
Weighted Avg 1.00 1.00 1.00 395

Predicted Efficiency Zones by Machine Learning

18.5

17.5

Predicted Zone
= MECZ
= Ecz
= NECZ
= HICZ
3 Others

775 78.0 78.5 79.0

79.5 80.0 80.5 810 815

Longitude

Fig 5. Performance Evaluation of Machine Learning Model for Paddy Cropping Efficiency Zone
Classification
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paddy production and cropping efficiency across
Telangana over two decades (2001-2020). Initially,
only 9 of 33 districts were actively engaged in
structured paddy cultivation, with the majority (24)
falling into the “Others” category, indicating minimal
agricultural activity. By Decade 2, the number of active
districts surged to 32, with Secondary and Tertiary
zones expanding from 3 to 13 districts each. This shift
reflects the widespread adoption of paddy farming
practices, supported by improved irrigation, access to
inputs, and institutional support. Cropping efficiency
zones also evolved significantly: High Intensity
Cropping Zone (HICZ) districts increased from 5 to 17,
while Highly Inefficient zones were eliminated entirely
(from 23 to 0). However, the rise in Non-Effective
Cropping Zones (NECZ) from 5 to 16 suggests uneven
progress and requires targeted interventions. Trend
analysis using the Mann-Kendall test showed a decline
in increasing trends within the Most Efficient Cropping
Zone (MECZ), dropping from 5 districts in Decade 1 to
3 in Decade 2, while decreasing trends rose from 3 to
5. A machine learning model trained on 395 districts
demonstrated perfect classification performance,
with a precision, recall, and F1-score of 1.00 for both
HICZ (202 districts) and NECZ (193 districts), and an
overall accuracy of 100%. These results underscore
the model’s potential for reliable agricultural zoning
and decision-making. However, further validation
using independent test sets is essential to ensure
robustness. While this study focused on crop-based
indicators, future research will integrate long-term
climatic data, such as rainfall, temperature, and
moisture indices, aligned with the critical phenological
stages of paddy. This integrated approach will enhance
the precision of agro-advisory services and support
climate-resilient agricultural planning across diverse
production landscapes.
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